MapReduce Notes
Execution Overview
- 把input files分割成M个部分。在机器集群上启动若干个程序的拷贝,其中有个特殊的拷贝叫master,其余的是worker,它们在master上注册。一共有M个map task和R个reduce task等待被分配给worker。
- 被分配到map task的worker,把M个input file pieces转换成Key-Value,存储在内存中。(在实际应用中,内存中的数据会被周期性地写入到硬盘中,根据partitioning function,被分配到R个区域。这些被写入磁盘的数据的位置,会被传给master。)
- 被分配到reduce task的worker,它们知道map task的output位置,使用RPC来获取这些output。当reduce worker获取到所有的intermediate data,就根据Key来排序,以确保相同Key的Key-Value聚集在一起。(如果内存装不下,需要采用外部排序)
- reduce worker遍历已排序的数据,对于每一个Key,把Key和它的Value集合作为参数传给
Reduce(key string, values []string) string
,Reduce函数的output会被添加到这个reduce partition最终的output里。
Types
// map (k1, v1) → list(k2, v2)
// reduce (k2, list(v2)) → list(v2)
type KeyValue struct {
Key string
Value string
}
mapFuc(key string, value string) []KeyValue
// Typically just zero or one output value is produced per Reduce invocation
reduceFuc(key string, values []string) string
Example
1. Count of Word Frequency of a Large Collections of Documents
func mapFuc(filename string, contents string) []KeyValue {
var output []KeyValue
keys := strings.FieldsFunc(contents, func(r rune) bool {
return !unicode.IsLetter(r) && !unicode.IsNumber(r)
})
for _, k := range keys {
output = append(output, KeyValue{Key: k, Value: "1"})
}
return output
}
func reduceFuc(key string, values []string) string {
num := 0
for _, value := range values {
i, _ := strconv.Atoi(value)
num += i
}
return strconv.Itoa(num)
}
2. Distributed Grep
const pattern = "your pattern here"
// The map function emits a line if it matches a supplied pattern
func mapFuc(filename string, contents string) []KeyValue {
var output []KeyValue
// seperates file contents by line
keys := strings.FieldsFunc(contents, func(r rune) bool {
return r != '\n'
})
for _, k := range keys {
matched, _ := regexp.Match(pattern, []byte(k))
if (matched) {
output = append(output, KeyValue{Key: k, Value: ""})
}
}
return output
}
// The reduce function is an identity function that
// just copies the supplied intermediate data to the output
func reduceFuc(key string, values[] string) string {
return key
}
3. Count of URL Access Frequency
// The map function processes logs of web page requests and outputs <URL, 1>
func mapFuc(filename string, contents string) []KeyValue {
}
// The reduce function adds together all values for the same URL
// and emits a <URL, total count> pairs
func reduceFuc(key string, values[] string) string {
}
4. Reverse Web-Link Graph
// The map function outputs <target, source> pairs for each link
// to target URL found in a page named source
func mapFuc(filename string, contents string) []KeyValue {
}
// The reduce function concatenates the list of all source URLs
// associated with a given target URL and emits the pair: <target, list(source)>
func reduceFuc(key string, values[] string) string {
}
5. Term-Vector per Host
/*
A term summarizes the most important words that occur in a document
or a set of documents as a list of <work, frequency> pairs.
What is a term vector?
http://www.inf.ed.ac.uk/teaching/courses/tts/pdf/vspace-2x2.pdf
*/
// The map function emits a <hostname, term vector> pair for each input document.
// (where the hostname is extracted from the URL of the document)
func mapFuc(filename string, contents string) []KeyValue {
}
// The reduce function is passed all per-document term vectors for a given host.
// It adds these term vectors together, throwing away infrequent terms,
// and then emits a final <hostname, term vector> pair.
func reduceFuc(key string, values[] string) string {
}
6. Inverted Index
// The map function parses each document,
// and emits a sequence of <word, document ID> pairs.
func mapFuc(filename string, contents string) []KeyValue {
var output []KeyValue;
words := strings.FieldsFunc(contents, func(r rune) bool {
return !unicode.IsLetter(r) && !unicode.IsNumber(r)
})
for _, word := range words {
output = append(output, KeyValue{Key: word, Value: filename})
}
return output
}
// The reduce function accepts all pairs for a given word,
// sorts the corresponding document IDs and emits a <word, list(documentID)> pair.
// The set of all output pairs forms a simple inverted index.
// It is easy to augment this computation to keep track of word positions.
func reduceFuc(key string, values[] string) string {
}
7. Distributed Sort
// The map function extracts the key from each record, and emits a <key, record> pair.
func mapFuc(filename string, contents string) []KeyValue {
}
// The reduce function emits all pairs unchanged.
// (This computation depends on the partitioning facilties described in
// Section 4.1 and the ordering properties described in Section 4.2)
func reduceFuc(key string, values[] string) string {
}
How To Handle Worker Failures?
Master周期性ping已注册的worker,如果没有响应(不管是延迟还是真的挂了),master就认为这个worker挂了。分配给挂掉的worker的task会被重新分配给空闲的worker:
-
已完成的map task在worker挂掉的情况下会被重新执行,因为存储在local machine的output已经不可获取。
-
已完成的reduce task在worker挂掉的情况下不会被重新执行,因为它的output已经存储在global file system中。
如果一个map task先后被worker A和worker B执行(因为worker A挂了),所有在执行reduce task的worker都会被告知这次re-execution。然后,所有还没读worker A产生的数据的reduce task都会从worker B读。
How To Handle Master Failure?
周期性地把master的数据写入硬盘(checkpoints),如果master挂了,就从最新的checkpoint恢复。
master挂了以后,停止MapReduce的计算,以确保一致性。
Paritioning Function
Map阶段使用Partitioning Function把中间结果分配到不同的文件中,默认的是hash(Key) % R
,用户也可以根据需要指定自己的函数。
Ordering Guarantees
我们保证在一个给定的partition中,中间结果key-value对是以key递增的顺序处理的。
顺序保证让生成有序的输出文件变得容易,当输出文件需要支持高效的循键随机访问或输出文件的用户需要有序的数据,这会很有帮助。
Combiner Function
在执行完map函数之后(仍是map阶段)通过网络传输之前,可以使用combiner对数据做部分的归并,这能明显加速某些MapReduce操作。
例如使用MapReduce做词频统计,因为在自然语言的语料库里单词的出现频率遵循齐夫分布(Zipf distribution),每个map任务都会产生成百上千的<the, 1>,这些大量的重复记录都会通过网络传输给单个reduce任务,并通过reduce函数产生一个结果。所以我们可以使用combiner减轻reduce任务的计算压力并节约网络带宽。
reduce函数和combiner函数通常是一样的,唯一区别是:前者的输出会被写入到最终的输出文件里,后者的输出会被写入到中间结果文件里。