63. Unique Paths II
这题就是Unique Paths的变种,区别在于增加了一些边界条件:
- 如果(x, y)有障碍,由于不可达,f(x, y) = 0。
- 如果(0, 0)有障碍,f(row - 1, column - 1) = 0
- 如果第0行上有障碍,由于机器人只能向下或向右走,障碍右侧的格子均不可达
- 如果第0列上有障碍,由于机器人只能向下或向右走,障碍下侧的格子均不可达
// TODO: 补图
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid[0][0] == 1) {
return 0;
}
int row = obstacleGrid.length;
int column = obstacleGrid[0].length;
int[][] f = new int[row][column];
f[0][0] = 1;
// 1. find the start of invalid row index
int startOfInvalidRowIndex = row;
for (int i = 0; i < row; i++) {
if (obstacleGrid[i][0] == 1 && i < startOfInvalidRowIndex) {
startOfInvalidRowIndex = i;
}
if (i >= startOfInvalidRowIndex) {
f[i][0] = 0;
} else {
f[i][0] = 1;
}
}
// 2. find the start of invalid column index
int startOfInvalidColumnIndex = column;
for (int j = 0; j < column; j++) {
if (obstacleGrid[0][j] == 1 && j < startOfInvalidColumnIndex) {
startOfInvalidColumnIndex = j;
}
if (j >= startOfInvalidColumnIndex) {
f[0][j] = 0;
} else {
f[0][j] = 1;
}
}
// 3. calculate f (set the value of invalid grids to 0)
for (int i = 1; i < row; i++) {
for (int j = 1; j < column; j++) {
if (obstacleGrid[i][j] == 1) {
f[i][j] = 0;
} else {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
return f[row - 1][column - 1];
}
}