Problems of House Rubber
198. House Robber
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
题目说了一大堆,简单来说就是窃贼不能偷两栋挨着的房子,在这个条件上要使得偷到的钱最多。
对于最后一个房子,窃贼可能选择偷或者不偷。设f[i][0]
为不偷第i
个房子最多能偷的金币,设f[i][1]
为偷第i
个房子最多能偷的金币。如果选择偷了第i
个房子,那么必然不能偷第i - 1
个房子。如果选择不偷第i
个房子,那么可以偷第i - 1
个房子,也可以不偷。
f[i][1] = f[i - 1][0] + a[i]
f[i][0] = max{ f[i - 1][0], f[i - 1][1] }
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
int[][] f = new int[n][2];
// 设f[i][0]为不偷第i个房子最大能获取的金币数
// 设f[i][1]为偷第i个房子最大能获取的金币数
f[0][0] = 0;
f[0][1] = nums[0];
for (int i = 1; i < n; i++) {
f[i][0] = Math.max(f[i - 1][0], f[i - 1][1]);
f[i][1] = f[i - 1][0] + nums[i];
}
return Math.max(f[n - 1][0], f[n - 1][1]);
}
}
其实我们也可以把这两种情况都压缩到一维。我们设f[i]
为偷前i
栋房子最多能偷到的金钱数,这就有两种情况,要么偷第i
栋房子,要么不偷第i
栋房子:
- 如果不偷第
i
栋房子,那就是f[i - 1]
- 如果偷第
i
栋房子,那么就不能偷第i - 1
栋房子(即必然会偷第i
栋房子,可能会偷前i - 2
栋房子),那么就是f[i - 2] + a[i]
合并两种情况得f[i] = max{ f[i - 1], f[i - 2] + a[i] }
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
} else if (n == 1) {
return nums[0];
}
int[] f = new int[n];
f[0] = nums[0];
f[1] = Math.max(nums[0], nums[1]);
int res = f[1];
for (int i = 2; i < n; i++) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i]);
res = Math.max(res, f[i]);
}
return res;
}
}
213. House Robber II
这题和上一题的区别在于:第0
个房子和第n - 1
个房子相邻,使得若干个房子构成环形,因此第一个房子和最后一个房子只能选择其中一个偷窃。
设f[i]
为不偷窃第0
个房子时在前i
个房子偷窃的最大金币数,f[i]
有两种情况:
- 偷第
i
个房子且不偷第0
个房子,这样就不能偷第i - 1
个房子了,即f[i - 2] + a[i]
(其中i
的取值范围是[1, n - 1]) - 不偷第
i
个房子且不偷第0
个房子,即f[i - 1]
(其中i
的取值范围是[1, n - 1])
合并得f[i] = max{ f[i - 1], f[i - 2] + a[i] }
。
设g[i]
为不偷窃第i
个房子时在前i
个房子偷窃的最大金币数,g[i]
也有两种情况:
- 偷第
i - 1
个房子且不偷窃第i
个房子,即g[i - 2] + a[i]
(其中i
的取值范围是[0, n - 2]) - 不偷第
i - 1
个房子且不偷窃第i
个房子,即g[i - 1]
(其中i
的取值范围是[0, n - 2])
合并得g[i] = max{ g[i - 1], g[i - 2] + a[i] }
。
问题的最终结果等于max{ f[i], g[i] }
。
注意,因为已经定义了i
的取值范围是[1, n - 1],所以我们没有在f[i]
的两种可能中额外减去a[0]
。
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
} else if (n == 1) {
return nums[0];
} else if (n == 2) {
return Math.max(nums[0], nums[1]);
}
// [1, n - 1]
int[] f = new int[n];
// [0, n - 2]
int[] g = new int[n];
// f[i] = max{ f[i - 1], f[i - 2] + a[i] }
f[0] = 0;
f[1] = Math.max(f[0], nums[1]);
int res1 = f[1];
for (int i = 2; i < n; i++) {
f[i] = Math.max(f[i - 1], f[i - 2] + nums[i]);
res1 = Math.max(res1, f[i]);
}
// g[i] = max{ g[i - 1], g[i - 2] + a[i] }
g[0] = nums[0];
g[1] = Math.max(g[0], nums[1]);
int res2 = g[1];
for (int i = 2; i < n - 1; i++) {
g[i] = Math.max(g[i - 1], g[i - 2] + nums[i]);
res2 = Math.max(res2, g[i]);
}
return Math.max(res1, res2);
}
}