Problems of In-place Reversal of Linked List
206. Reverse Linked List
Reverse a singly linked list, return the head of the reversed linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode curr = head;
while (curr != null) {
ListNode oldNext = curr.next; // 1. stores the old next
curr.next = prev; // 2. the current points to the previous
prev = curr; // 3. the current becomes a new previous
curr = oldNext; // 4. the current moves on
}
return prev;
}
}
Why return prev
? Cause prev
pointed to the last curr
(the last node).
92. Reverse Linked List II
Reverse a linked list from position m to n. Do it in one-pass.
Note: 1 ≤ m ≤ n ≤ length of list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
private ListNode reverseN(ListNode head, int n) {
ListNode prev = null;
ListNode curr = head;
for (int i = 0; i < n; i++) {
ListNode oldNext = curr.next;
curr.next = prev;
prev = curr;
curr = oldNext;
}
return prev;
}
public ListNode reverseBetween(ListNode head, int m, int n) {
ListNode dummy = new ListNode(42);
dummy.next = head;
ListNode ptr1 = dummy;
ListNode ptr2 = dummy;
// finds the endpoint of the left segment
for (int i = 0; i < m - 1; i++) {
ptr2 = ptr2.next;
}
// finds the endpoint of the right segment
for (int i = 0; i < n + 1; i++) {
ptr1 = ptr1.next;
}
// finds the tail of the reversed linked list
ListNode t = ptr2.next;
// reverses a part of the linked list and gets its head
ListNode h = reverseN(t, n - m + 1);
// links up the left segment with the head of the reversed linked list
ptr2.next = h;
// links up the right segment with the tail of the reversed linked list
t.next = ptr1;
return dummy.next;
}
}
234. Palindrome Linked List
Given a singly linked list, determine if it is a palindrome.
We can solve this problem in three steps:
- finds the middle of the linked list
- reverses the second half of the linked list
- traverses from the head and end of the linked list and determines if each of the numbers are equal
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
private ListNode findMiddle(ListNode head) {
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
private ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode curr = head;
while (curr != null) {
ListNode oldNext = curr.next;
curr.next = prev;
prev = curr;
curr = oldNext;
}
return prev;
}
public boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) {
return true;
}
ListNode middle = findMiddle(head);
ListNode ptr1 = reverseList(middle);
ListNode ptr2 = head;
while (ptr1 != null && ptr2 != null) {
if (ptr1.val != ptr2.val) {
return false;
}
ptr1 = ptr1.next;
ptr2 = ptr2.next;
}
return true;
}
}
24. Swap Nodes in Pairs
Given a linked list, swap every two adjacent nodes and return its head.
You may not modify the values in the list’s nodes, only nodes itself may be changed.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode swapPairs(ListNode head) {
ListNode dummy = new ListNode(42);
dummy.next = head;
ListNode c = dummy;
while (c.next != null && c.next.next != null) {
ListNode a = c.next;
ListNode b = c.next.next;
// swaps nodes in pair
c.next = b;
a.next = b.next;
b.next = a;
c = c.next.next;
}
return dummy.next;
}
}